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1 Introduction

This report describes the software deliverable D3.2: the first implementation of map
quality assessment and localisation assessment functionalities for task T3.4. Our prototype
framework for reliability-aware mapping and safe localisation at this point in the project
includes software for scan registration quality assessment (section 2), localisation quality
assessment for anticipating and mitigating inaccurate localisation (section 3), as well as a
more generic map quality assessment module (section 4) that labels “implausible” areas
of a map.

Some of the contents of this report related to registration quality assessment and
localisation quality assessment were reported already in D3.1, although they were not
planned to be ready until this D3.2. This report includes some more detail and information
about the integration into the complete DARKO software/hardware implementation.
Notably, the section on map quality assessment (section 4) is completely new for this
deliverable.

2 Registration quality assessment

Scan registration is a central part of both the mapping and the localisation pipeline
described in D3.1. As such, automatic assessment of the result of scan matching is
important for detecting and mitigating errors and to improve mapping and localisation.
Our current version of registration quality assessment is the CorAl method of Adolfsson
et al. [1]. The current implementation is a refactoring that, compared to the original
version [2], includes extensions to 2D range data, which is applicable to the 2D range data
from the Sick safety scanners on the DARKO robot platform.

CorAl computes the average differential entropy in two point clouds, comparing the
local point entropy in each point cloud separately to the union of the point clouds. See
fig. 1a. A key idea is to estimate the entropy inherent in the scene from the entropy in
the separate point clouds, which enables CorAl to accurately assess quality in a range of
different environments. The decision boundaries between aligned vs non-aligned point
clouds can be learned in a self-supervised fashion from accurately aligned scans with poses.

The key features of the CorAl method, compared to alternative methods for scan
alignment assessment, is that it (1) provides a simple and intuitive measure of alignment
correctness between point cloud pairs that generalize well, and as such (2) can highlight
regions that indicate misalignment, and (3) employs self-supervised learning of decision
boundaries. Our recent publication [1] contributes further systematic evaluations, includ-
ing an ablation study of parameter importance, comparisons to four aditional baselines,
and a new cross-environment study. Figure 1b shows results as classification accuracy vs
the alignment error, compared to a set of baselines on the Oxford RobotCar dataset. Small
errors are generally the hardest ones to detect.

We believe that CorAl has great potential to serve as an alignment quality tool for
point clouds in general and can improve localisation robustness by equipping odometry,
relocalisation, and loop closure systems with the capability of introspectively detecting
small errors in diverse environments. For example, the method has since been included in
the TBV-SLAM framework [3].

3 Localisation quality assessment

Precise localisation is key to most mobile-robot systems, not least those that are deployed
in industrial settings. However, even state-of-the art lidar-based systems may fail or lose
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(a) Uncertainty (entropy) is preserved when joining aligned point clouds
P, U2, (left), but increases when joining misaligned point clouds (right).
The entropy for aligned point clouds should be similar to the entropy in
the separate point clouds and can be used when quantifying alignment

quality.
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(b) Classification accuracy vs translation error for consecutive scans (0.0)
and scans taken at least 10 m apart (10.0), respectiveley. CorAl is the
most accurate of the evaluated methods in particular for consecutive
scans and can detect small alignment errors of 0.3 m with > 90 %

accuracy. (CFEAR-P2L requires 0.2 m larger errors to reach similar level

of accuracy.)

Figure 1: The CorAl method for registration quality assessment (from Adolfsson et al. [1]).

accuracy, in particular in feature-sparse environments (e. g., fully stacked warehouse aisles
or transport corridors).

Our aim is to be able to predict localisation risk (i.e., the risk of generating inaccurate
pose estimates) and account for it by taking preemptive measures; e.g., such that a planner
can generate “risk-aware” paths that takes both the risk of inaccurate localisation and the
path length into account.

Some recent methods attempt to determine whether the current sensor view contains
sufficient features to be matched to a map [4]. However, the potential loss of localisation
may be overestimated by such measures as they do not consider the temporal filtering
aspects inherent in localisation methods like Monte Carlo localisation. Our proposal [5] is
based on the concept of alignability, which represents the estimated capacity of a given
range scan to be aligned other ones — prior to attempting registration, in contrast to CorAl
(section 2) which assesses pairwise alignment “after the fact”. CorAl and related methods
are useful for detecting localisation and mapping issues but cannot be used useful for
proactively avoiding inaccurate localisation.

In order to predict the quality of localisation, we contribute here with localisation risk
maps, the first implementation of which being an alignability map. (For future iterations
we intend to also include dynamics as a localisation risk factor.) Our approach aims to
capture localisation risk spatially and serves to predict where in a map localisation may be
less accurate. Example alignability maps are shown in figs. 2a and 2b.

We have presented these alignability maps and how they can be used for risk-aware
motion planning in two IROS workshops [8, 5]. The main contributions are summarised
below.

An alignability map in our case is a 2D grid map in which each cell represents the
expected alignability that can be obtained from different scans within that area. The
definition of our alignability map is based on different measures of alignability: the one
proposed in Nobili et al. [6] and another set of metrics based on the 3D-NDT represen-
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(a) Warehouse environment. Aisles that lack geomet- (b) Corridor environment. As expected, alignability is
ric features are marked as less alignable (red shades) low in the featureless corridors, but higher near the end
indicating higher risk of localisation error. of corridors and when passing other passages.

Figure 2: Two examples of alignability maps for prediction and mitigation of localisation error.
Red regions indicate feature sparsity, which entails a higher risk of inaccurate localisation

tation [7]. The former measure aims to quantify the variety of surface normals present
in a given scan: the higher this variety is, the higher the alignability and, therefore, the
lower the localisation risk. On the other hand, NDT-based metrics are defined on the
covariance of the pose estimate from the scan registration optimization problem based on
the D2D-NDT function. The lower this uncertainty is, the better the expected alignment
between point clouds and, intuitively, the lower the risk of localisation error.

Our quantitative experiments show that alignability can be used as an indicator of
localisation error and we validate, with Granger causality tests, that it also serves to
anticipate the occurrence of errors. Figure 3 shows time series of Nobili alignability and
localisation error when driving several rounds in the warehouse environment shown in
fig. 2a. We have marked in this plot every time the error gets noticeably high and also
all events of extremely poor alignability. Each peak of localisation error always takes
place some time after the events of poor alignability. Thus, we can visually assess that the
alignability metrics are useful to predict localisation errors. We have also demonstrated
this more formally through statistical Granger causality tests. In all Granger tests (each
based on a Pearson y? test with a significance level of 0.05) the null hypothesis H, was
confidently rejected (p-values are around 0.02 for Nobili’s metric and below 2 - 1078 for
the NDT-based ones) meaning that all the alignability metrics Granger-cause the localisation
error. More details can be found in Castellano-Quero et al. [5].

Figure 4 demonstrates the use of alignability maps in motion planning. In these
examples, we have constructed a cost map from the alignability map in fig. 2a in order to
influence the motion planner to avoid regions with extremely low alignability. We shwo
the results of four experiments in which the robot follows a path between two waypoints.
Each experiment has been repeated two times, leading to different paths (see figs. 4a
and 4b). The paths that ignore alignability costs (red) are the shortest possible, while the
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Figure 3: Localisation error vs alignability. The three events marked as E correspond to
localisation errors higher than 0.6 m, the ones labeled as N to Nobili’s alignability values
lower than 0.01. There is a clear visual correspondence between low-alignability events and
high-error events, as also quantified by Granger causality tests (described in the text). (The
time series have been filtered by using a moving median filter with 6 seconds of window size.)

other ones (blue) tend to avoid the two central corridors, which exhibit lower alignability
(see fig. 2a). We have also measured the localisation errors for each path (see fig. 4c),
finding that those generated by considering alignability costs always suffer from lower
positioning errors.

We have integrated these alignability maps as cost maps for the DARKO risk-aware
motion planner. The integration of alignability maps into DARKO’s planning framework is
further described in D6.3. Prototype software for alignability mapping is available below.
First, the implementation of Nobili’s alignability metric can be found in:

mapping/alignability:

type: git

url: https://gitsvn—nt.oru.se/software/alignability.git
version: master

The implementation of NDT-based alignability metrics is available in:

ndt_core_public:

type: git

url: https://gitsvn—nt.oru.se/software/ndt_core_public. git
version: nice—devel

Finally, the implementation of our alignability map is available in:

risk_map:

type: git
url: https://gitsvn—nt.oru.se/darko/software/risk_map. git
version: master

which relies in the previous two packages and that will be updated in the remainder of
DARKO to integrate further layers of sources of localisation risk, e. g., dynamics.

4 Map quality assessment

Our prototype implementation for reference-free map quality assessment is based on a
variational autoencoder that can assess 2-D occupancy grid maps. Occupancy grid maps
are widely used in the robotics landscape, including DARKO, and offer a convenient way
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(a) Planning A-B and C-D. (b) Planning E-F and G-H.  (c) Localisation errors obtained while execut-
ing the paths in figs. 4a and 4b.

Figure 4: Motion planning experiments with localisation risk maps, in the environment shown
in fig. 2a. Blue trajectories represent paths generated by considering alignability costs, while
red ones do not consider them. Green squares delimit a region with very low alignability. Please
note that the sensor range has been cropped to 6 m here in order to provoke larger localisation
errors.

to leverage image based learning methods. In occupancy grid maps there can be regions
that misrepresent the environment, for example where a wall is too thick, or regions that
are only partially explored and the map is incomplete in those areas. In practice, maps
are usually assessed qualitatively by a human expert, but these assessments are not easily
reproducible and tend to vary greatly between people. Furthermore, assessing all of the
regions of a map by a human is a time consuming task. With this variability in mind, a data
driven method is chosen to limit potential sources of errors and to ensure a reproducible
and repeatable process to map quality assessment.

Occupancy grid maps are composed of cells that represent the probability of being
occupied where the value of a cell is in the range of [0,1] where a value of 0 or 1 represents
a high probability of the cell being free or occupied, respectively. The proposed method
remaps the cells of the map such that the cell can be one of three classes, Unknown,
Occupied and Free with corresponding value 1, 0.25 and 0, respectively.

One common issue with building models is the availability of ground truth or labelled
data which can be time consuming to generate (as also noted by, e. g., Andersone [9]).
Our proposed approached uses an autoencoder, as a type of unsupervised learning, to
learn an encoding of maps. An autoencoder first encodes the input data by transforming
the data, usually to reduce the dimensionality, and then decodes the data, attempting
to recreate the input data from the encoding. For occupancy grid maps, the input data
would then be patches of the map with size N x N, along with tunable patch constraints
such as the minimum number of occupied cells 7, per patch and the maximum number of
unknown cells 7; per patch. In the current prototype implementation, prior knowledge of
the working environment (such as corridor width, expected wall thickness and cell size)
should be considered when setting these parameters, in order to feed the encoder patches
that have enough structure that it should learn.

The data driven aspect of the proposed approach hypothesises that for any given map,
the majority of the map accurately represents the environment and that only a small
portion poorly represents the environment. An autoencoder trained on patches of the map
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250

200

150

100

(b) Reconstruction loss L, using the trained encoder to reconstruct the occupancy grid map from patches extracted
from the map used for training.

(c) Grid map where cells with a loss L > 7; are highlighted with blue, indicating cells that are of concern.

Figure 5: Example occupancy grid map for map quality assessment. Source: Pre-2014 Robotics
2D-Laser Datasets (http://www.ipb.uni-bonn.de/datasets/): Seattle UW (D. Haehnel).
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that meet certain criteria should converge on an encoding that captures the majority of
the map that represents the environment accurately and the poor sections will be poorly
represented by the encoding. We can then analyse the reconstruction loss L of a patch
by comparing the input patch cell values with the ones generated using the encoder. Cell
values with a higher reconstruction loss should then correspond to regions with potential
map errors.

The proposed method has been evaluated using three occupancy grid maps for this
deliverable, which are given in figs. 5 and 6. Patches extracted from the map shown in
fig. 5a with size N = 28 and meeting the requirements 7, = 5% and 7, = 45% were
used to train an autoencoder. In other words, patches with at least 5% occupied cells and
at most 45% unknown cells were chosen to be of interest to train on, in order to avoid
training on a large number of all-free or all-unknown map areas.

The resulting reconstruction loss of the entire map, generated by applying all patches
of the map that do not have all the cell values with the same value, is shown in fig. 5b. A
cutoff value of 7; = 132 was chosen by assessing the reconstruction loss. Any grid cell
with a value larger than 7; would be deemed to be incorrect. Figure 5c illustrates which
cells of the trained map would then be considered incorrect.

Figure 6 shows two more examples of applying the encoding learned on fig. 5a with the
same threshold 7, highlighting the ability of the developed method to successfully encode
a map and the ability to transfer to other occupancy grid maps of different environments
but with similar structure.

In future work, we aim to include self-supervised learning in new environments by
incorporating online sensor data, to learn suitable values for the tunable hyperparameters,
and to extend the method to three-dimensional data.

5 Summary

In this report we have outlined the current implementation of the prototype software used
for reference-free map quality assessment and localisation quality estimation contributing
to DARKO’s Objective 4 (“risk-aware operation for safety and efficiency”).

For localisation quality assurance we have implemented a first version of (on-line)
localisation quality assessment by means of the CorAl scan alignment measure (section 2)
and (off-line) localisation risk maps based on alignability (section 3). We have shown how
these localisation risk maps can be used to predict and to mitigate localisation error.

For map quality assessment we have implemented a variational autoencoder (section 4)
that learns the expected appearance of 2D grid maps in an unsupervised fashion and thus
is able to mark “suspicious” regions of the map. Our preliminary experiments indicate that
this approach is useful for highlighting low-quality areas of a map, due to mapping errors
(e. g., registration mistakes or missed loop closures) or due to missing coverage during

mapping.



H2020-ICT-2020-2: 101017274 DARKO Deliverable D3.2

(a) Second occupancy grid map used to test the (b) Second occupancy grid map with regions high-
propose methodology. Scale unknown. Source: lighted with the colour blue indicating cells that are
Radish: Robotics Research Datasets (Wagan et al., of concern.

2008): sdr_site_b (A. Howard) https://dspace.mit.edu/

handle/1721.1/62245.

(c) Third occupancy grid map used to test the pro- (d) Third occupancy grid map with regions highlighted
pose methodology. Scale unknown. Source: Radish: with the colour blue indicating cells that are of concern.
Robotics Research Datasets Albert B (C. Stachniss,
2010) https://dspace.mit.edu/handle/1721.1/62291.

Figure 6: Further examples of map quality assessment using the variational autoencoder
proposed in section 4.
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